
(NASA-CR-12020 6) SPECIFICAIIONS AD-21831
PEOGPAHS FOR COMPUIER SOFTWARE VALIDATION N74-21831
Final Report (Infozrmation Research
Associates, Inc.) Unclas

CSCL 09B G3/08 16809

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Departmt of Commerce
Spri ield, VA. 22151

IFOR ITIOTI RESERCH BSSDCITES

Final Report

Contract NAS8 28084

Specifications and Programs for Computer

Software Validation

Information Research Associates

2200 San Antonio

Austin, Texas 78705

November 20, 1973

Authors

J. C. Browne

R. Kleir

T. Davis

M. Henneman

A. Haller

G. L. Lasseter

Table of Contents

I. Introduction

II. Fortran Automatic Code Evaluation System

III. Specification Language Project

IV. Array Index Validation System

V. Software Validation Complex

I. Introduction

The output of this contract has been the development of three software

products, the Specification Language System, the Fortran Automatic Code Eval-

uation System and the Array Index Validation System, all of which have been

delivered and installed upon the Marshall Space Center, 1108 computer facility

and a report covering the design of a hardware/software facility which is cap-

able of simulating code execution in I/O logic etc. of various computer archit-

ectures. The format of this final report consists of the detailed study which

has obtained through the hardware/software simulation validation complex and

small sections detailing the conceptual and functional capabilities of three

program products. Detailed documentation of each of the software products was

delivered at the time of installation. Reference to this documentation will

often be made for elaboration of the summaries given here.

II. Fortran Automatic Code Evaluation System

A. Introduction

A complete description of the Fortran Automatic Code Evaluation System

(FACES) including the general description, directions for use, the tables pro-

duced by the system and its file structure was delivered with product instal-

lation.

FACES is designed to serve as an automatic aid in analyzing and debug-

ging Fortran programs. FACES is a software package which takes as input a For-

tran program which may contain many modules (subroutines and functions). The

system is composed of two main parts, the Fortran front-end which gathers infor-

mation about the input program and a set of routines organized as a diagnostic

package which evaluates the information and prints warning messages concerning

actual or potential errors. All information for the analysis is at present

obtained statically from the source code of the Fortran program. Extensions

2

to the system can be made to include dynamic traces and the run-time analyzers.

The Fortran front-end scans and parses the Fortran input program,

gathering information about the source code as parsing is done. A graph struc-

ture of each routine analyzed is formed and information concerning interface

between routines is gathered. This information is then stored in sets of tables.

The second portion of the FACES system consists of a set of diagnostic routines

which analyzes the information that is stored in the tables looking for possible

danger signs and analyzing for particular types of problems in a program. Each

routine may be optionally chosen for execution by the user. The four diagnostic

routines developed under this contract are i) verification of correct parameter

alignment between routines, ii) verification of COMMON block alignment, iii) analy-

sis of variable initialization, and iv) a trace of the future and history of

specified variables.

B. Diagnostic Routines

1. PARAL

The diagnostic routine PARAL may be used to check alignment of all

parameters in SUBROUTINE and FUNCTION calls. PARAL is invoked by the statement

CALL PARAL (IATOPT) where IATOPT is an option chosen by the user indicating whe-

ther array parameters are to be checked for equal dimension. If IATOPT equals

zero array dimensions will not be checked. Otherwise array dimensions will be

will be checked. PARAL will check the alignment of all argument lists and calls

to subroutines and functions that have been analyzed by the Fortran front-end.

Each argument list will be checked against the defined parameter list to insure

that the following conditions exist:

a. Corresponding parameter lists have the same number of parameters.

b. Corresponding parameters within each list are of the same type.

c. Corresponding array parameters with each list have the same

dimensions.

3

2. TRACEY

The diagnostic routine TRACEY may be used to determine if all varia-

bles are initialized before being used in a manner that might presume prior ini-

tialization (called an input usage). Those variables which are in COMMON or in

a DATA statement or always used as entry parameters are assumed to be handled

correctly. The routine is referenced by the statement CALL TRACEY (MDNAM1, MDNAM2).

The parameters MDNAM1 and MDNAM2 contain the name (four characters per word, left-

justified and blank-filled) of the routine to be analyzed.

Input usages are those in which the variable effects:

a. the value of any other variable

b. the flow of control of the routine

c. the output

From each input usage a backware trace is performed along all possible entry

paths. Each such path must pass through an initialization of the variable or a

diagnostic is produced.

3. COMBAL

The diagnostic routine COMBAL may be used to verify the alignment

of all common blocks in the routines that have been analyzed by the Fortran

front-end. It is referenced by the statement CALL COMBAL (NMCK). The parameter

NMCK allows the user the option of specifying that the variable names in the

COMMON block will be checked for alignment. The alignment conditions that are

checked for are the following:

a. Corresponding COMMON blocks must have the same number of entries.

b. Corresponding elements within each COMMON block must have iden-

tical dimensions.

c. Corresponding elements within each COMMON block must be the same.

d. Corresponding elements within each COMMON block must have iden-

tical names (only if NMCK equals 1).

4

COMBAL produces output for each COMMON block. The output consists of the COMMON

block name, the routines in which it appears and when the above alignments are

not met, diagnostic messages associated with these routines.

4. PATHS

The routine PATHS may be used to either trace the history or chart

the future of a value of a particular variable at a particular statement in a

program. The call statement for PATHS is CALL PATHS (I, MDI, MD2, IV1, IV2,

NODE). MDI and MD2 refer to the name of the module to be considered. IV1 and

IV2 contain the name of the variable to be traced. NODE is a statement number

from which the trace is initiated. I is a parameter specifying either the back-

ward or forward trace. If I is zero, PATHS will produce a list of all variables

which might have effected subject variables value at NODE and associated with

each variable the node at which re-evaluation is noted. If I equals one PATHS

produces a list of all variables which may be effected by the subject variables

value at NODE and the associated node for each re-evaluation. Variables may

appear more than once in the output if there is more than one associated node to

be listed. It should be noted that the value traced is the value of the subject

variable immediately prior to the execution of the statement number NODE.

III. Specification Language System

A. System Overview

The objective of the specification language project is to allow a prog-

rammer to verify his coding, by comparing a specification of his algorithm to

the object code ultimately produced by the compiler from the program he writes.

In order to accomplish its task, the system is divided into three phases:

1. The specification, which is a formalization of the algorithm's

flowchart, is given to the system for translation to an internal graph-structure

representation. This graph is "folded" to produce a minimal graph.

5

2. The object code produced by the Fortran program is decompiled

into the same internal graph representation, and is again folded.

3. The two graphs are compared, to insure that the graphs are iden-

tical, and to assure that the actions along the graph arcs are compatible.

B. System Status

1. Specification Language Processor

A complete description of the Specification Language is given in

the previously submitted documentation. The program to translate Specification

Language input to internal graph representation is completely operational. It

produces as output two data structures: the graph itself, and a list of reverse

Polish commands which represent the actions to be performed along the arcs of

the graph. Within the graph, a node is considered to be a machine state, and

an arc going from one node to another represents the action which must be taken

in order to effect the corresponding state change. The graph structure is des-

cribed in detail in Section 2.c of the internal documentation for the Flowchart

Translator. The reverse Polish code is described in Section l.d in the same

document and in other places referred to by that section.

2. Graph folder

The graph folder, also complete and operational, produces from an

internal graph representation of an algorithm, a "minimal" form of the same

graph. That is, the graph produced by this phase retains from the original graph

nodes of only four types: (1) nodes with no predecessor, (2) nodes with no suc-

cessor, (3) nodes with more than one predecessor, (4) nodes with more than one

successor. When a string of one-entry, one-exit nodes is encountered, the ac-

tions necessary to make the set of transitions are packed into one arc, the arc

coming from the previous "important" node. In this way, redundancies in repre-

sentation are eliminated, and the need for storage is minimized. The action

representations, however, are kept in their original form for use at the compari-

6

son phase.

3. Decompiler

It was not possible to produce a decompiler which was as complete

as had been originally hoped. There were several reasons for this, the primary

one being the lack of system documentation by the Univac Corporation concerning

its compiler and its relocatable code format. The fact that the Fortran com-

pilers were of different versions at Marshall Center and at the computer instal-

lation on which we developed the programs was also a factor.

The decompiler is neither complete nor "perfect". It is rigorously

provable that to produce a "perfect" decompilation of Univac 1108 Fortran V

object code is impossible. One example of a feature which prevents perfect de-

compilation is the compiler's use of temporary locations. When a subroutine call,

such as CALL SUB (I + 7) is made, the value "I + 7" is computed and stored in a

temporary. It is impossible to tell -- given only the object code -- whether

that computation actually was the compiler's use of a temporary, or the prog-

rammer's having pre-calculated the value and placed it into his own temporary

location.

Sections of the decompiler which are incomplete include the handling

of complex and double-precision arithmetic. This arithmetic is handled, but in

a very simple manner, as if the values were single-precision real numbers. The

Univac 1108 Fortran V "FLD" function is not provided for. The primary reason

is that this function is not in ANSI Fortran; because of this omission, the only

shift instructions which are decompiled are those which shift through 36 bits --

thereby producing a register to register transfer -- and those which effect a

multiply or a divide.

Finally, because of the temporaries problem, it was decided not

to expend the effort involved in doing an analysis of the temporary locations.

The temporary storage analysis would have been prohibitively complex, and (as

7

previously stated) could never have been complete. The primary result of this

omission is that when a value is stored in a temporary location, the decompiler

assumes that that store is into a program variable. An extra node and arc are

therefore produced in the graph, representing the store operation which the decom-

piler thinks it found. If a complete analysis of the temporary locations were

possible, this store could be treated ds a store into another register, and code

not be generated at that time.

4. Graph comparer

Because of the limitations on the decompiler, the graph comparer

was also produced in a restricted form. Since for the more elaborate arithmetic

expressions good code generation may not be assumed, the rigorous comparison of

actions would not be meaningful. Therefore, when an arc is to be compared to

an arc on the corresponding graph, the only thing that is checked is the code

representing the type of the action. For example, if a 14 (assignment) matches

a 14 on the other graph, the comparer is satisfied. There are problems with this

approach, but given the time allocated and the decompiler restrictions, it
was

felt that to do more would not have been justified.

The program is complete with respect to actual graph comparison.

The heart of the comparer is a section of code which can call itself recursively;

when called, this section is given a pointer to an edge in the graph. It will

then compare that edge, and all succeeding edges, down to a node which has more

than one exit (that is, a decision node). At that point, it will first recur-

sively call itself to establish a correspondence between the edges out of the

node on one graph and the edges out of the node on the other. Once this corres-

pondence is established, it must then recursively call itself once again for

each edge out of the multi-exit node, to effect a comparison between the corres-

ponding edges and all their successors down to a multi-exit node. (Etc.)

The error messages produced by the comparer are listed and des-

8

cribed along with a description of the control cards necessary to operate the

entire system in the documentation previously submitted. Note that because of

the decompiler limitations, error messages will be produced which are not really

there. For example, since a storage into a temporary location
will produce a

node and an arc on the Fortran graph, the lack of a corresponding node and arc

on the flowchart graph will produce an error. The comparer will, however, be

able to recover from this error and continue its
comparison unhampered.

C. Conclusions

1. Specification Language

a. The Specification Language can be a valid tool in the repre-

sentation and validation of algorithms. In its present form, with punched-card

input, it is not as effective as it might be.

b. Flowcharts are essentially graphical entities; therefore, input

to the system should be graphical.

c. In order to effectively specify an algorithm, facilities
must

be provided to specify every detail of it. (This version omits such details as

formats.)

2. Decompiler

a. To produce a "perfect" decompiler is impossible.

b. To produce a complete decompiler would require much
more effort

than was budgeted to the entire project for this year.

c. For working, tested Fortran compilers such as that
on the Univac

1108, the effort which must be dedicated to producing
a decompiler is not justi-

fied. With a probability far greater than .99, any errors which are introduced

into algorithm are introduced before compilation. With new untested compilers --

such as that for the SUMC -- however, decompilation might
be a valid tool for

veri fi cati on.

d. To produce the best decompilation possible, the original
com-

9

piler should retain and pass on information about how it did its job; for

example, its name table would be extremely helpful.

3. Comparison

a. It is possible to compare program graphs in a straightforward

manner.

b. To compare program actions, however, requires far greater

effort. Many compilers use special "tricks" wherever they can. The sign of

a value is particularly hard to pin down; for example, the 1108 Fortran state-

ment "A = B - C" produces the following code: load C, subtract B, store nega-

tive into A.

IV. Array Index Validation System

A. Purpose

The purpose of the Array Validation System is to determine the validity

of array references within a DO loop. The system uses output in the form of

tables from FACES. The tables used are SYMTAB, USETAB, etc. These tables are

described in the documentation provided for FACES.

B. Capabilities

The capabilities of the current system are limited to checking array

references which use DO loop indices as subscripts. This includes the following

two cases:

Case 1: DIMENSION ARRAY (5)

DO 10 I = 1, 6, 2
10 ARRAY (I) = - - - -

In this case the terminal parameter (upper bound index) is greater than

the declared dimension of the array. This problem is handled in the following

10

manner. The following formula is used to determine the number of times the

loop is executed:

DO I = K, L, M

(1)

Max i,
M

Combining this result with

K + (Max - 1) M (2)

yields the highest value the array index can achieve.

Case 2: DIMENSION ARRAY (5)

DO 10 I = IVI, IV2, IV3
10 ARRAY (I) =-

In this case the program derives sufficient conditions for non-viola-

tion of array bounds and prints them out.

V. SOFTWARE VALIDATION COMPLEX

Objective

The Software Validation Complex (SVC) is a tool designed

for enhancing the reliability and performance characteristics of a

computational system. These design goals require investigating the

operation of hardware, software, and the cooperative environment

within the objective system. The final result would be a test bed

environment for the operation and instrumentation of a projected

system. Considerable attention is required to operational philosophy

before the physical system can be realized. The resulting system is

expected to mechanize the development of future systems and to change

existing systems.

Within this global frame work, the investigations to be reported

in this section involve the groundwork and first attempt at the design

of such a system. The subjects to be discussed encompass the topics

of:

1) Investigation of computational processes

2) Identification of feature expression

3) Implementation requirements

4) Experimental system analysis

5) Proposed extensions to current results.

In modeling the computational system, it is desirable that the

exposition adjust to the detail level desired by the investigator.

The features to be examined should be presented with the fidelity

12

present in the actual system, but unnecessary details below the level

of inspection should not impede the analysis process. If possible,

the model should telescope automatically to the desired level allowing

reversibility to detailed investigation if necessary. Furthermore,

the entire process should not be required to be in one particular

level of detail; rather, the portions not under investigation should

contract to the most computationally efficient form to expedite the

investigation.

Results from the model can be used to institute a modular

simulator for support activities on modular machines. Just as the

actual hardware is physically constructed, so should the support

simulator. To institute this aim, some design discipline must be

exercised in the production of the simulator. Interface requirements

must be identified and undesigned portions accommodated. This approach

would track the development and permit rapid reaction to design

changes in the actual system. The final version of the resulting

simulator would closely replicate the final hardware version.

Toward these ends, the control of the system must be vested in

the user through some more transparent medium than an elaborate design

language. The user should be free to incorporate useful constructions

into the system as required to perform tasks considered clumsy with

the existing constructions. Rules for the incorporation of new

building blocks should be simple and clearly explained. Supervisory

system requirements should be driven from the user's description of

13

the target process rather than requiring explicit supplemental

information auxiliary to the target process description.

To accommodate the modularity requirements and construction

simplicity, a representation format was chosen which implicitly indi-

cated the construction through local connections among modular units.

Input and output interfaces are manifested by connection omission

in the description. Automatic recognition of these points assists

the integration of independently developed subunits.

14

II. Principles of Operation

To realize the goals of flexibility, modularity, and con-

struction ease, some aspects of computer system operations must be

investigated. The results of this investigation are coupled with

operational philosophies commensurate with distributed control of the

system. This permits the user described target system to operate on

a flexible host machine capable of reconfiguration to fit the target

system under inspection.

Characteristics of Computational Processes

Computational processes, whether implemented in hardware or

software, share common characteristics. The medium employed, however,

affects the operational methodology and attack even when the purpose

is similar. These media differences contribute to the operational

characteristics and limitation frequently observed in hardware or

software systems. In an effort to avoid these pitfalls, the features

of computational processes were examined to identify desirable proper-

ties which might serve the objectives of SVC and origins of failure

mechanisms to avoid.

The primary objective of any computational process is to move

information through a.set of transformations which produce the desired

results. This is accomplished by

1) Establishing a network of potential information flow among

the transforming components.

2) Dynamically controlling the flow to particular paths con-

sistent with the aims of the process.

15

EXAMPLE INFORMATION FLOW MODEL OF
TARGET PROCESS

Delay time

FIGURE 1

16

To illustrate, consider the example process depicted in Figure 1.

The lines correspond to potential information flow paths while the

boxes represent transformations performed on the information present

on incoming lines. This format represents only the potential for

flow in the process, much as the syntax of a language indicates

potential legitimate sentences of a language. For example, it is

impossible from the static representation of the process to determine

whether blocks B, C, and D operate simultaneously, or by some prior

agreement (i.e., control), only one operates at a time. Similarly,

this static representation would be the same for both a serial system

in which information progresses from A to C to F, or for a parallel

system in which A, C, and F are all simultaneously active on different

information moving through the system in a pipeline fashion. Notice

that the information flow diagram of Figure 1 might represent any of

the three programs of Figure 2.

The actual flow of information is governed by a control

structure. Conceptually, actual information flow occurs at the inter-

section of the control system and the information flow paths. For

example, one process might assign value to a quantity which appears

as an input to another process. Unless the second process is activated,

however, actual information flow does not occur. Rather, the informa-

tion is destroyed on the next execution of the first process.

In general, hardware implementations of computational processes

have enjoyed more integration success among separately developed parallel

subsystems. The operational properties of hardware and software systems

17

A = INPUT + E

B=B+A

E = B**2
A = INPUT + E

C = 10 + A
IF (A) 10, 20, 30

D=A-5
10 B = B + A

OUTPUT = E**2 + 2*C + D
E = B**2

(a) C D = 0

GO TO 100

20 C = 10 + A

E=D=0

A = INPUT + E GO TO 100

IF(A) 10, 20, 30 30 D = A - 5

10B = B +A C= E= 0

E = B**2 100 OUTPUT = E**2 + 2*C + D

GO TO 100

20 C = 10 + A (c)

GO TO 100

30 D = A - 5

100 OUTPUT = E**2 + 2*C + D

(b)

CANDIDATE PROGRAMS FOR EXAMPLE INFORMATION

FLOW MODEL

FIGURE 2

18

were characterized in an effort to identify the reasons for this

capability to incorporate these features in software systems.

Software Properties

Software systems accomplish control through a program counter

concept. The fundamental representation format of a software system

(i.e., program listing) indicates the sequence of operations to be

performed. There is typically a partitioning of software operations

into control and computational classes. The two classes interact

through conditional branch operations in which computations influence

the flow of control. Similarly, control flow influences computations.

Typically, the control format contains some default "next operation"

sequence (usually the next sequential location) which occurs unless

an override in the form of an explicit control operation occurs.

Flow of information in software is accomplished through variables.

The program description representation indicated the potential flow of

information through a forward chaining mechanism. That is, variables

are assigned value in one location and the appearance of the variable

in a subsequent statement indicates a potential coupling with the assign-

ment. Given a usage of a variable, it is usually necessary to track

the control flow to determine where the information originated. The

potential information flow usually is derived by auxiliary information

(e.g., a cross reference list) to aid determination of the actual flow.

Historically, the program operations have been serially executed.

That is, additional instructions beyond the normal process procedure

19

description have been introduced to override the assumed serial

operation. This has been accomplished with "fork" and "join" operations

imbedded in the source code. In the absence of these constructions,

it is assumed that at most one operation is active. Virtual parallelism

is accomplished using partitioned data in which one task at a time is

executed. Results of these partitioned tasks are subsequently used by

later tasks.

Hardware Properties

Hardware systems have been represented primarily by a data flow

format (e.g., schematic diagram) indicating the interconnection of

hardware components. Each component in the system introduces more

"variables" for holding information since electrical considerations

reduce the possibilities for sharing these resources among several

modules. When sharing does occur, some implied protocol governs the

shared resource (e.g., wired ORing or ANDing). Typically, each unit

in the hardware organization operates in a combinatorial fashion, re-

acting to input stimulation. This produces "event fronts" which

ripple through the interconnected network producing the desired results

at the output lines.

Control of hardware processes is accomplished by two methods:

1) Iterative stable states

2) Time advance.

A stable state is achieved when the input change of all networks causes

the same computational result to appear on the output as the current

20

value of the output. In effect, the event front arriving at networks

are suppressed since the resulting output remains the same value.

Inductively, the absence of change implies that all downstream compo-

nents will maintain their same values, hence the combinational results

will stabilize. It is easy to see that in a large network without

feedback, this stable state is eventually obtained.

With feedback present, the second control mode is required. In

time controlled circuits, the stable state is forced by some circuit

which relies on the passage of time rather than formal electronic input

to cause an output change. These components, commonly clocks, have

distributed outputs such that at a minimum, all feedback circuits sub-

ject to unstable state transitions have their feedback temporarily dis-

connected. The disconnection is produced by identifying some function

of the clocks to predominate in the switching circuit. For example,

a clocked register will not respond to input data line changes unless

the clock is "on" (i.e., the output value remains the same if the clock

is "off"). In effect, the change of time causes the hardware network

to stabilize by selectively causing suppression of the event fronts.

Control of the hardware process displays characteristics of a

time window in which a subsection of the system is active at any parti-

cular time. Usually, the portions that are active in adjacent time

slots are also physically adjacent in data coupling, allowing each

section to produce results which are subsequently used by the next

section. This type of operation is called "phasing" such that results

move from one station to the next in adjacent time slots. Through

21

subordination of some clocks to other clocks, a hierarchy in the

control structure can be instituted to any level of structure. The

interaction in this hierarchy is usually depicted in a timing diagram

for the system in which the time ordered sequence of the clocks is

illustrated. This information,coupled with the data representation

schematic, allows the investigator to trace the dynamic action in the

machine.

Hardware systems, unlike software, are intrinsically parallel

in operational nature. Considerable design effort is required to

accomplish the phasing in hardware systems (e.g., achieve the sequen-

tial behavior present in software). Furthermore, for some span of

time (called the delay time), the inputs to a hardware module and the

output values emanating from the module are inconsistent with the

switching function. Although inconsistency is also present in software

systems (e.g., a subroutine during execution), the event is rarely con-

sidered significant since control is usually not available to execute

any external activity. (Note: This phenomenon is significant when

parallel processors are used. It leads directly to Bernstein's paralle-

lism conditions.)

Program Integration Error Sources

In an effort to identify the problem sources in integrating

separately developed software modules, some investigation of trouble

sources indicate features to be avoided in establishing operation prin-

ciples on the SVC. These limitations contribute to malfunctions in

both the initial system implementation and in malfunction experiences

22

during extension and modification of existing systems.

1) Program Variable Usage. In general, the storage of informa-

tion in software systems is not a one to one mapping onto the variables

used to physically hold the values. That is, in hardware, introduction

of new components automatically introduces additional "variables" (i.e.,

signal lines) which must be deliberately joined with existing lines to

cause interaction with previous results. In programs, concern for space

economy promotes the reuse of previously established variables in the

system. This results in discarding information at points in the pro-

gram where it might be later required. Similarly, the intermodule

communication methods through passed parameters and common data promote

the undisciplined modification of passed information. Reducing variable

space requirements through reuse of storage locations is similar to

minimization of switching functions. The resulting implementation is

efficient for the application at hand but very difficult to extend and

modify.

2) Program State Implication of Program Counter. To identify

the state of the process in software, the current location of the program

counter often serves to represent the aggregate of all conditional

testing previously performed. That is, since the program is executing

at point A, all logical conditions leading to A must have been satis-

fied to get there. Frequently, the variables used for state testing

have been modified. Retesting the state or ascertaining the conditions

present at that point becomes difficult. It is not surprising that

logically inconsistent processing may be introduced in the system in

23

this environment.

3) Failure to Grant Control. To modify the software system,

correct calculation code must be inserted and the programmer must

assure that control is granted to that section at the appropriate

time. Thus, there is a twofold opportunity for error: 1) malforma-

tion of the computation being introduced, and 2) incorrect warping of

the existing control structure. In hardware, the second effect is

moderated since the introduction of additional computations is driven

by the combinatorial events at the terminals of the new processor.

4) Incompleteness of Process. The completeness of a software

system is expressed by absence of code for the "don't care" condition.

In effect, the absence of code indicates that an occurrence is not

significant in the system. Thus, it is impossible to distinguish bet-

ween those activities which are legitimately ignored and those which

result from omissions in the design. In particular, programmers tend

to think only in the direction of positive occurrences. That is,

activity is triggered when some conditions occur. The activity re-

quired when the event reverses is frequently not treated. Consider

the case of a decode function in which one of several lines is set

depending upon the input value. While it is obvious that the line cor-

responding to the current line must be set when the appropriate input

appears, reset of the previously set line may receive secondary con-

sideration. In fact, many cases can be presented in which the necessity

for reset can be programmed around.

24

Basic SVC Concepts

From the observations presented, principles of operation in

SVC were defined to avoid some pitfalls. These decisions strongly in-

fluence both the reliability of constructed systems, flexibility of

modifications, and distribution of the computational workload on an

expandable host machine. In general, operational characteristics were

adopted which most closely approximate the activities found in hardware

since these display more natural integration, parallelism, and modifi-

cation properties.

1) Paramount Fidelity. The consideration for operational

fidelity of the target system was considered of primary importance.

In particular, fidelity was considered more important than efficiency

or minimum simulation cost. For this reason, the current system con-

tains a deliberate excess of activity to avoid suppressing values which

might be required in a modified version of the process description.

Optimization to reduce the excess activity is considered a postdescrip-

tion phase.

2) Event Stimulated Simulation. The prime moving control me-

chanism in the SVC description is the change of value. If some informa-

tion link changes value, activities connected to this information are

initiated. Thus, the incorporation of new activities is reduced to in-

serting them in the appropriate network location and allowing their

locally contained operational characteristics and activity at the in-

terface to initiate the new process.

25

3) No Distinction between "Data" and "Control" Information.

In simulation systems which attempt to partition the control and data

functions of information lines, there are occasions in which process

expression becomes extremely awkward. For example, consider an itera-

tive process controlled by the error between the current solution and

the desired value. The current result is both data and eontrol since

it determines both whether another iteration is required and what value

is to be passed on to later sections. This is not to say that strict

partitioning of control and data cannot be used on SVC, but rather,

it is not a process requirement. The concept of "control"

appears to be a mutual agreement among modules that certain values

will modify the behavior of given components. It is largely a device

for human conceptualization of the system and used to organize sub-

sections into an analytically tractable form. Control is instituted

in SVC through local interpretation by each module in the system.

The interpretation of the incoming values and implications of output

values remain with the user.

Similarly, the SVC support supervisor system is completely

ignorant of the semantic interpretation among modules. It assumes

that the description is a collection of combinatorial processes connected

in a selfmanaging fashion. The supervisor's primary duty is to

serialize parallel activity and assure the computational fidelity with

the actual process. With this approach, all control functions are

resident with the user who expresses the operational properties in-

directly through describing the target subsystem. (i.e. no additional

control information is required.)

26

4) Reduction of Program Counter Implications. The program

counter is used exclusively to provide a physical processor to logical

processes. There is no implication in the system as to the state of

the target description beyond which unit is currently active. All that

can be inferred from this information is that an input line to the

active module has changed value.

5) Module Interface Rules. The rules for interfacing two modules

under the supervisory system are very simple; the simplicity of these

rules, however, precludes policing consistent semantic interpretation

between the two modules. The interconnecting link must be the same

size. For reasons which will be amplified later, each module must have

unique output lines rather than output to other common lines. This

requirement is usually satisfied by hardware components or when exceptions

occur, some defined protocol (e.g., OR or AND function) occurs which en-

compasses all contributing module output values. Each module is prohi-

bited from modifying "input" lines unless these are expressly connected

to outputs of that module. The effects of these requirements and

suggestions on relaxation of them are discussed in Implementation Consi-

derations and Experimental Results sections.

6) The User Maintains Complete Control, The user's description

of his target system is the fundamental definition of system control.

No directive information is required by SVC to properly control the

system. The user, at his option, may express semantic properties about

the target system operation characteristics to improve simulation time,

27

however, such information is only a simulation performance enhance-

ment and has nothing to do with fidelity of the operation. Auxiliary

semantic information permits the suppression of system events which

either are not of interest to the user or will be dynamically rejected

by the target process.

In keeping with user control of the simulation, instrumentation

of the target system is included with the process description. The

SVC system draws no distinction between monitor and operational

modules; however, the former is typified by having no output lines.

Usage Scenario

A major application of SVC is found in system development using

a top down design and bottom up implementation. In this situation,

the user performs an initial design which indicates the scope and

nature of the resulting system. He then reviews the availability of

components to implement the system and identifies those which currently

exist. Missing components are constructed by connecting available com-

ponents. Each subunit is individually tested and adjusted for proper

operation. Integration is performed by expressing local connectivity

among the separate subunits. The process continues with expanding

subunit scope until the totality of the system is constructed.

To accomplish this design scenario, the user must have available

information describing existing components from which to draw. The

operational properties of these components depend upon the type of

system he is constructing. For example, the primitive constructions

for an operating system, computer hardware, queuing models, etc., would

28

differ substantially. It is important, however, that these components

are managed in a compatible fashion to permit a heterogeneous system

simulation. Appropriate semantic coupling of components in this type

of system is, of course, the user's responsibility.

As the SVC is used, constructions are developed from previous

designs. In some sense, the presence of these component models indi-

cates previous design needs and some prior experience and/or availability

is indirectly adaptive to the usage requirements of the installation.

The library constructions are probably provided by personnel

familiar with programming on SVC and perhaps not the user. Similarly,

users of previously developed library components should be concerned

with the internal operations of the module. For this to be practicable,

some expression of module design limits is required to prevent misapplica-

tion by a subsequent user. This characterization will also assist the

designer in formulating his requirements and changes necessary to adapt

modules to his needs. This liaison is accomplished by appending each

library component with a simple descriptor sunmmnary indicating the inter-

face requirements necessary to successfully apply it. When the user in-

vokes the module, this description is compared with the interface in-

formation of the user's description to insure the module is being properly

used.

The user's target system description contains both the functional

components of the projected system and instrumentation modules for his

behavioral investigations. While this description is most expedient

with an interactive system, the basis of the description is local

29

interconnection of modules drawn from the library. The description

in symbolic form is automatically translated into a host runnable

form which executes under the supervision of the host executive. The

description can be rerun without translation with different input

data. If the system is to be modified, the symbolic form is adjusted

and retranslated. When the subsystem is satisfactorily designed, in-

strumentation is removed from the description and the subsystem is

stored away pending integration with other sections.

With the intended usage scenario and principles of operation

established, actual techniques required to implement this system are

presented in the next section.

30

III. Implementation Considerations

To bridge the gap between previously presented concepts and

an operational system, considerable attention must be directed toward

further foundations required in applying the host language and host

machine. These factors impact the system's actual utility from the

user's standpoint. The analysis of this section produces postponed

decisions necessary to produce the experimental system presented in

the next section.

Distribution of Responsibilities

Serial Execution of Parallel Processes

Because the intent of SVC is to permit a general purpose

simulation test bed, even with a flexible host configuration, at some

point the target process degree of parallelism will exceed that of the

host. Thus, the simulation system will have to perform parallel pro-

cesses in a serial fashion. Care must be taken to assure that simul-

taneous target events correlate with results in the actual target

process.

To illustrate the requirements, consi,der the activities in a

typical target transaction on SVC. Assume the simulated target process

is that illustrated in Figure 1. Suppose further that module A has

just completed its computation and the evaluation has resulted in a

different value from the previous output. In general, this change

requires that modules B, C, and D be executed to produce their result.

From previous discussions in the last section, we do not know from the

31

potential information flow diagram whether all three or only one

of the connected modules should execute. Each module of the network

has an associated delay time. Suppose that B, C, and D all have

different times and that module F expects a particular arrival pattern

at its inputs. Thus, after the execution of the appropriate modules

in the set of B, C, and D, the arrival pattern to subsequent modules

must be coordinated. In general, the execution sequence must be

managed and the data values on the various target process lines must

be correlated with time.

Since, by assumption, the supervisory routine has no knowledge

of module semantics, the determination of input value significance

will be made by the individual modules. That is, when an input change

to a module is detected, the module is executed. A portion of this

execution is an activation analysis in which the module determines

whether an execution of the mathematical function is appropriate. If

an execution is not appropriate, control is returned to the supervisor.

If execution is necessary, the function is evaluated.

If the result of the evaluation is different from the current

output, successor modules must be permitted to activate. If the evalua-

tion produces the same value present on the output line, no downstream.

activity is required; control is returned to the supervisor. Notice

that the supervisor is never aware of the difference between modules

which choose not to activate and those which activate and produce the

same result.

32

Similarly, it is important that the individual modules not be

required to know the connectivity of the processing network. This

assumption greatly simplifies coding general purpose routines for use

in the SVC library. Target process connectivity is managed by the

resident supervisor.

Recognition of changed output values would be most easily per-

formed by the functional module. Individual modules are each aware

of the number of outputs and the data format of each output. Lacking

global connectivity information, however, the module can take little

action. Furthermore, incorporating the same change analysis code in

each functional module would increase the code bulk considerably.

Therefore, a compromise was instituted to interface all functional

modules with the supervisory routine.

A service routine is called at the completion of evaluation

execution; it compares the resulting evaluation with the information

presently on the corresponding output. If they differ, the service

routine informs the supervisor. Control is returned to the processing

routine after change inspection. This exchange occurs for each

functional module output.

Data Management

When parallel processes are serialized, considerable attention

is required to avoid the untimely destruction of data values. Suppose,

for example, in the process of Figure 1, that A and B are parallel pro-

cesses which execute serially. Suppose that A is selected for execution

33

first and, as a result of its execution, the output value is changed.

Obviously, A cannot be permitted to directly place the new result

on the output line since B is still to be evaluated. The execution

of B requires that the "old" information be available. In theory, the

new value of A will be available after the delay time of A and not at

the current time. Thus, the necessity for data buffering arises because

we are effectively executing values in advance of current time.

In general, every target description component might be in simul-

taneous execution, requiring the temporary holding of output informa-

tion until the appropriate time. To accomplish this in each individual

module would require a complete duplication of the target process data

base. Usually, only a subset of the information will have both "old"

and "new" values at any point in time; our impass is that the particular

subset varies dynamically and is difficult to predict. Thus, a data

holding manager is introduced in the supervisory system which receives

the new data output values from each module and queues these along with

the time at which they become "valid".

Time Management

Since time in the target description is controlled to achieve

virtual parallelism, some system component must be responsible for the

advancing time. Clearly, the supervisor is the only component with

enough information to effect this decision. The supervisory system

knows the module connectivity and is informed of changing values with

their times. Using this data, modules are scheduled for execution at

34

a particular virtual time. Time is advanced when all activities

scheduled for the present time are exhausted. The amount of advance

can be determined by examining the times associated with recorded

changes rather than a fixed increment of advance. That is, after the

execution of all necessary modules, the changed outputs are scanned

for the closest event to the current time. This becomes the new time

and modules connected to the changed output lines are scheduled for

execution.

The summary of activities required in the execution of the target

system simulation is illustrated in the table of Figure 3.

System Flexibility

The SVC system adaptation to a variety of requirements is

governed by host machine characteristics, language capabilities, and

match of target process to host process.

Resolving Target/Host Mismatches

To resolve target and host mismatches, some operation principles

must be defined in the host machine. These usually involve trade-offs

in the implementation features which may move the mismatches around

the system rather than eradicate them. For the moment, attention is

restricted to the simulation of a target computer on a given host

machine.

The simulation of one computer on another machine is demonstra-

tively easier if the host equipment is more powerful than the target.

If the converse is true, some subset of target machine features is not

_ 35
curront ti;e lirnage-id inforrmation

.SCHEDULER on lin age

TIME QUEUE TABLE

,mo1!0du'e-id delay ti a:e actuation current
condition condition

NODULE ID TABLE

-'I lik L.ul -id co*putation successor
re:ult on niodules

- K t.n linkaye
j((old , new)

- i---" LIHI'jGE ID TABLE

4;t : ccrunication line to data base i-__ : inquiry and report line

Mi : dule i A1 : Actuation Monitor for Mi

OPi : OPeration of Mi L1i1i : Change Monitor for Mi

1:i =: A"Mi + OPM i C:,.li

NOT REPRODUCIBLE

(a)

SUMMARY OF RESPONSIBILITIES

ACTIVITY PERFORMED BY

Schedule Module Execution Supervisor

Advance Simulated Time Supervisor

Update Information Paths Supervisor

Compute Logical Output Function Functional Module

Compute Information Availability Time Functional Module

Identify Actuation Condition Functional Module

Identify Change of Information Change Monitor

(b)

SVC OPERATIONAL OVERVIEW

FIGURE 3

36

supportable on the host. With a flexible host, capabilities can be

expanded to exceed those of the target. The host machine superiority

does not imply that all features of the host supersede those of the

target machine. For example, the host hardware may have more storage

than the target machine, but the word size of the host might be shorter

than the target. Thus some dynamic host activities are required to

reconcile these differences. The methods employed for this matching

will affect the coding of module functions, but should not affect the

user's conceptualization. The standards adopted will require recogni-

tion by all functional modules of the information interchange format

to insure an orderly system. With this cooperation, any module can

communicate results to any other module.

The features which commonly differ among machines are enumerated

as follows:

1. Word Size. Differences in word size can be reconciled by

the usual technique of using multiple host words to accommodate target

machine information which exceed the host machine word width. Several

implications accrue from this decision. For example, the functional

routines to perform target system operational activities can be modula-

rized to permit arbitrary information sizes. The actual size in a

particular instance will be established at allocation time. These

techniques frequently require special treatment for the first word and

last word, but general treatment for all interior words.

Since the information must be exchanged between modules using the

host structure, a format convention for mapping onto host words must be

37

established for use by all modules. The format selected for the

SVC experiment system excluded the host machine sign bit. This packing

avoids complications in some (e.g., add, subtract) routines, increases

problems in others (e.g., shift, mask), and is ignored in some cases

(e.g., AND, OR). If the format is burdensome, individual functions may

internally reformat incoming information to modularize the operation.

At the interface, however, the format is standardized.

2. Value Coding. While the concepts of bits and concatenating

bits into words is standardly used in all computer systems, the value

represented by a particular pattern of bits may vary. Among possible

interpretation forms, one's complement, two's complement, and sign

magnitude are the most prevalent selections. Since the number of

varieties is limited, exhaustive coverage of alternatives through unique

functional modules tailored to these values is feasible. The major

question is what form to use for the target description information

linkages; that is, should the information be kept in target or host

interpretation. Interconnection problems to the user are minimized by

keeping the information in target form. Conversion to host value repre-

sentation is performed for those functions which utilize host facilities

assuming this form.

3. Formal Conventions. Beyond the integer representation of

values, the formats of higher constructions (i.e., floating point num-

bers, complex numbers, double precision representations) vary widely.

The provision for all possible variations of these constructions would

be prohibitively expensive. Thus, the decision was made to restrict

38

the functions implemented to integer representations. Higher con-

structions could be functionally constructed on an ad hoc basis from

these lower forms. The majority of interpretations will easily fit

into positional and value interpretation variations which can be

treated independently.

4. Bit Numbering. The number of bit positions within a con-

struction varies from machine to machine. Sometimes the interpretation

may vary within the same machine. For a quantity of n bits, the most

frequent representations are numbering from 1 to n, from 0 to n-l, with

the highest number bit being most significant, or with the lowest

numbered bit most significant. The number of bits within the target

machine or the numbering of words for that matter, primarily impacts

the descriptive symbolic process in which the user first expresses the

target process. This variation was not treated extensively; however,

provisions for the frequent forms encountered could be provided to

translate any convention selected by the user to the form required by

the host processes.

Host Target Capability Gap

The capability gap, or processing capabilities of the target

system which are unnatural or awkward in the host machine,will limit

the flexibility and efficiency of the resulting simulation. Consider,

for example, the simulation of hardware systems in toftware. As pre-

viously mentioned, the basic operation assumptions and execution

characteristics differ, but in addition, the microscopic flexibility

39

of the target medium introduces manipulations which can cause

difficulty.

In particular, hardware systems often exercise the option to

select a subset of information lines to form another signal. This

permutation of existing bits is quite easily performed in hardware but

difficult to simulate in software. For example, consider the selection

of every odd numbered bit from a register collected to form a signal

of half the original size. This is easily accomplished in hardware,

but if the register is represented as a word of memory in the simulation,

the extraction of this new signal will require quite a few computations

to obtain the permutation.

Usually, the subset selected is a strict subset of contiguous

bits--this process will be called field selection. The field selection

process can be applied with other logical processes to obtain all the

permutations available through wiring selection. The example of

Figure 4 indicates how the field selection process could be implemented

on SVC. Notice that field selection is an activity which is performed

in zero time on the actual target. Field selection is simply a vehicle

to accomplish hardware-like activity in software.

In large part, necessity for introducing these normalizing con-

structions demands some behavior restraints such as prohibiting inputs

from being outputs of a module. Consider modifying the example of

Figure 4 into the construction of Figure 5a. Suppose the subset signal

out of the field selection gate were modified in value by the functional

process in module C. This would imply that the subset of the signal

40

PHYSICAL PROCESS

(a)

FS F.S. = Field Selection

SVC MODEL

(b)

FIGURE 4

41

OUTPUT TO INPUT COUPLING HAZARD

S

(a)

REQUIRED MODEL

(b)

FIGURE 5

42

path from A to B, from which the field was extracted, must be made

equal to the value of the subfield. For each occurrence, a structure

illustrated in Figure 5b would be required.

Another problem with the simulation of hardware on software

based systems is that electrical characteristics which control the

system are now absent. The necessity for maintaining the delay

characteristics of hardware components has already been discussed. To

understand another problem, consider the illustration of Figure 6.

Here the different lengths of delay in the feedback loops cause a pro-

liferation of events until one event arrives at the input terminals of

module A before it has theoretically finished the previous response.

The questions to be resolved are: 1) How many of the generated results

are useful? and 2) What should be done in the event that a new input

stimulation appears while a unit is currently active?

The first question cannot be answered without interpreting the

semantic interchange of neighboring system components. This requires

additional knowledge about the event front in the description which

transcend individual module boundaries.

For the second question, if an event arrives before the functional

unit has completed the reaction to the last arrival, several interpre-

tations are possible. These include:

1) Physically concurrent events whose timing difference

is negligible.

2) Pipeline operation where the new arrival begins an event

front and outputs are not synchronized with input arrivals.

43

MODULE ACTIVITY

A B

C

S2

INPUT ARRIVAL HAZARD

(a)

MODULE ACTIVITY
A

A --

2 3

PIPELINED ACTIVITY MODEL

FIGURE 6

44

In the first case, physical reaction is limited by the "rolloff

frequency" of the unit. That is, if events occur more rapidly than

the unit can respond, all events in the time frame of the rolloff fre-

quency period are treated as coincident in time. Thus several arrivals

result in only one output from the functional module.

If pipelining is present, the SVC system will require that the

stages of the pipe be broken out into functional units to distinguish

this from the rolloff frequency case (see Figure 6b). In this fashion,

an output from one stage occurs before the next pipeline input begins,

although the event front has not traversed the full length of the pipe.

At first glance, this requirement appears to demand more process

description and have adverse effects on abstraction. Further examina-

tion indicates that the activities required at the pipeline state inter-

face would actually be required internal to the piped representation

if it were implemented as a single unit. Thus, no additional processing

effort is being introduced: the required activity is simply being moved

from the interior to the exterior.

Implementing Language Limitations

The implementation discussion has indicated a need for flexible

and adaptive constructions in the functional modules and their linkage;

availability in the language selected will govern the degree of auto-

mated adaptation and simulation efficiency impact when dynamic methods

must be used to supplement language flexible features. For the example

system, FORTRAN was selected to implement the system since the purpose

45

was more expository than operational. While simulation efficiency

was not the primary consideration, the impact of selecting FORTRAN

on system flexibility was not fully appreciated at the onset.

Most FORTRAN limitations stem from the requirement for prematurely

binding constructions at compile time. For example, it is impossible

to construct pure FORTRAN routines with a variable number of formal

parameter inputs. An alternative is to present the number of inputs to

the routine in vector form as one of the formal parameters. The vector

representation requires elements to occupy contiguous memory locations

and additional execution time to link the list dynamically. Contiguous

storage could be allocated for each individual module independently;

however, when several modules require access to the same information,

several modules may impose conflicting requirements which cannot be

simultaneously satisfied.

Similarly, the only convenient allocatable storage medium in

FORTRAN is the array. Therefore, the target system information linkages

were assigned from the user description to array locations with the in-

formation coupled to the processing routines through formal parameters.

Some of the needed flexibility was obtained using PARAMETER state-

ments to tailor modular subroutines. To accommodate different sized

information lines, standard quantums were established (e.g., 2, 4, 8,

etc.) from which the user must select one or connect several in a sub-

network to obtain the desired sized routine.

Similarly, full macro expansion requires text editing of the basic

routine and selective incorporation or omission of executable sections

46

to customize functional modules. These capabilities are absent in

FORTRAN.

Another problem to resolve is whether to couple the target

machine information to the functional subroutines through formal para-

meters or COMMON data areas. Clearly, COMMON is the most efficient

dynamic linkage, but its use inhibits the sharing of execution code.

For example, several target machine adders may have identical processing

capabilities. They differ only in the information lines upon which they

operate. If COMMON is used to link operands to the adders, each adder

must be represented as a physically separate routine. Formal parameters

permit one subroutine to perform all the adder functions with one sub-

routine copy.

Furthermore, the use of COMMON directly increases the possible

access to information by the subroutine without proper description to

the global supervisor; this can produce undesirable error conditions

and can lead to a proliferation of ad hoc techniques which violate

operational assumptions. Rather, the appearance of awkward operations

should promote some analysis of the underlying principles to indicate

desirable philosophy adjustments.

User Interface with SVC

Features must be provided in SVC to promote assistance rather

than frustration in the user community. These considerations cover many

of the construction concepts previously presented as well as some atten-

tion to practical problems faced by the designer. Some problems may be

47

peripheral to the theoretical system operations such as providing

meaningful diagnostics, allowing user defined defaults, providing

understandable and predictable actions when description faults are

discovered, easing system initialization, providing a runnable des-

cription when errors are encountered, and providing a convenient sym-

bolic environment.

Since the user is usually not the software developer of the

library components, some attention is directed toward checking the

usage of functional modules in the described environment to insure

that software design limits are not abused. This reduces the necessity

for voluminous documentation to coordinate interface with the user

community.

Functional Library

It is not desirable to force all library components to an arbi-

trary level of detail. Rather, the collective components of the library

should cover the constructions required for various target systems, but

functional overlap and duplication of effort are not expressly discouraged.

Rather, components should embody constructions which are primitive

enough to be fully comprehended functionally. The internal workings of

each functional module should exploit any machine specific features which

enhance the operational performance of the routine. Primary interface

with user application is explanation of module inputs and outputs in-

cluding any information coding used by the routine module to dynamically

interpret the operations (Note: the coding pattern should be user

adaptable to a specific application.)

48

Functional modules in the SVC library are characterized by the

following properties:

1. Module input and output data are partitioned in

the formal parameter list.

2. Activation conditions (if any) for individual modules

will be contained in the internal procedure.

3. When activated, the module is responsible for re-

porting any output line which potentially changes.

(Note: the module does not directly place the new

value on the output line, but rather passes this in-

formation to the supervisory change monitoring routine.)

Describing the Target Process

The user describes the target system by local interconnection of

functional modules. Although the process is most convenient with an

interactive terminal, the interconnection can be accomplished symboli-

cally by labeling the functional blocks and information lines and

linking them through reference techniques similar to programming

languages. The symbolic presentation requires labeling and translation

labor in which transcription errors are likely; these considerations

increase the examination burdens of the SVC support systems to detect

these errors.

When the user specifies a target system component, his specifica-

tion is checked for the following:

1. The subroutine to perform the component function exists

in the library.

49

2. The input lines specified are outputs from other

target components.

3. The names of output lines are not in conflict with

other component outputs.

4. The inputs and outputs of the specified module are

compatible with the requirements of the implementing

subroutine.

a. Input (output) information of the target compo-

nent is connected to subroutine input (output)

parameters.

b. The information line size of the target component

does not violate requirements of the implementing

subroutine.

c. The number of inputs and outputs is equal to the

number of parameters in the implementing subroutine.

If this checking indicates a deficiency in the user description, warning

messages are issued and predictable defaults are inserted to produce

a runnable description.

The user controls the target system by specifying delays on the

functional computations of his components. The delay figure can be

defaulted to a prescribed value. For the default value, the most

natural selections are:

1. Unit delay

2. Zero delay.

50

After weighing the merits of these two alternatives, the zero

delay figure was selected for the demonstration system. The reasons

for this selection are:

1. In organizing the target description with delay times,

the user frequently identifies an information flow path

through the description and associates a time with this

path. The aggregate time is then distributed among the

components of this path. If changes are required to

correct or modify the description, more components may

be inserted in the paths. With zero delay default, these

changes can be inserted without affecting the coordina-

tion of timing among the paths. With the unity delay

default, all affected paths must be rebalanced with each

insertion. Constant readjustment is both irritating and

time consuming.

2. Some functional modules must be included in the des-

cription which resolve target/host media mismatches.

These processes actually take zero time in the target

machine (e.g., selecting a subfield of an information

pattern). The selection of zero delay permits minimum

distraction to the user when these incorporations are

necessary. It also permits the supervisor system to

treat these special functions in the same fashion as

other modules.

51

Other defaults to resolve are:

1) Information line sizes - defaulted to the

smallest allocation of host machine resource (usually

one word).

2) Information coding convention - defaulted to host

machine property unless otherwise specified.

3) Initial value - defaulted to zero.

Constant Provisions

Although the information lines discussed have implied varying

values, there is the necessity for providing constants within the

system for use as inputs to the functional modules. For example, an

adder functional module can be tailored to perform incrementation by

attaching a constant to one of the addend inputs.

To provide constants in a compatible fashion, a dummy component

is attached to the target description. The implementing subroutine

for this component never modifies any of its"outputs". These informa-

tion lines are used as recepticles for the constant values. When out-

puts for the dummy routine are specified in the description, the initial

values are declared and maintained for the execution duration. By

connecting these information lines to other module inputs, the constant

values are distributed to other system components.

Initialization

To facilitate the initialization process, several techniques are

required. Those information lines which require values other than the

52

default number are initiali7ed in the target machine description.

These values are inserted in the allocated host space before simula-

tion execution commences.

For larger storage units, for example, main memory, there are

two alternatives:

1) Permit the target machine description to simulate the

the actual bootstrap operation.

2) Prestore the information before simulation begins.

Although the first alternative might be instructive for a few

runs, the expense is clearly prohibitive for all simulation runs.

Furthermore, the bootstrap approach is infeasible for a partial simulation

(i.e., where only a portion of the target is described).

Thus the prestoring facility is required to bring the SVC

system to a worthwhile level. The only decision is whether to treat

initialization as a special case or to accomplish initialization

through the target system description (either by user specification

or automatic modification to the description).

By definition, initialization procedures are performed only

at the onset of the processing. Incorporating initialization proce-

dures through expanded target machine description produces description

components which become inactive after initialization has been per-

formed. These inactive units may impose a dynamic processing load on

the execution to ascertain whether information is to be routed from

the functional components or the initialization components. To the

53

user community, the description expansion approach may produce

unjustifiable overhead.

For this reason, ad hoc techniques were adopted for functional

procedures involving mass loading prior to execution. Secondary

entry points were introduced into the operational subroutines for

linking externally prepared load files. It should be noted, however,

that this technique does not exclude target process bootstrapping or

description augmentation techniques if the user desires these initiali-

zing methods.

Delay Characteristics

To control the execution, delays are inserted in target machine

components. The question is whether to associate this time with the

module itself or the output information signals. For modules with

single outputs, the approaches are equivalent. If, however, the

module produces several outputs, associating the delay with the module

implies all outputs occur simultaneously. In some hardware modules,

for example, the outputs may vary in availability time; this varia-

tion is significant only if some of the outputs are required for use

before the other values appear. If delay values are associated with

each line, significantly more information is required to express delay

characteristics of the target process. Even if the outputs occur

simultaneously (i.e., the same delay value for each output), multiple

locations must be used.

It was determined that usually either the outputs of a module

appeared simultaneously or, if the timing differed, it was not

54

03

Required Output Phasing

Function i.

Module ,

Dela3

03

SVC Model

FIGURE 7

55

significant in the target process. Thus, the delay time was

attached to the module directly. If a module required different

timing, the minimal time of all outputs is used for the modules and

delay modules are inserted in series with these lines to achieve addi-

tional delay times required to phase the arrival outputs of the module

(see Figure 7).

Execution Effort Reduction

While efficient execution is not the primary concern, the cost

of running investigations will obviously impact the utility and applica-

tion. Since some approaches will strongly influence the operational

system cost, tradeoffs were examined to guide the initial decisions.

Subroutine/Macro Tradeoffs. The functional modules can be implemented

as subroutines or macros; the impact of these alternatives will affect

system size and execution speed. Guiding alternatives are the linkage

overhead of a subroutine versus the increased system size through ex-

panding macros. Furthermore, macro utilization will require text editing

of the FORTRAN source code prior to compilation. Thus, the system will

require recompilation if minor changes are made. Subroutines are directly

supported in FORTRAN and more naturally fit in the system. The impact

of changes will be moderated if the target description is modified.

The size reduction with subroutines will naturally depend on the

ability to use common procedures. Common procedures require not only

functional process equivalence, but also absence of compiled constants

or residual execution information (i.e., OWN variables). If information

56

MULTIPLE ACTIVATION HAZARD

FIGURE 8

57

storage can be moved to the parameter interface, opportunities for

sharing code are substantially enhanced. The use of subroutines was

embraced for the experimental system for design flexibility rather

than size efficiency.

Multiple Activation Suppression. Since each module independently

activates its successors, the possibility exists that a successor

module may be activated several times for the same logical time. Con-

sider the example illustrated in Figure 8, where,at a particular time,

modules A, B, and C are active and they all have the same completion

time, say to. Then, if all three outputs are changed, each module will

request the supervisor to schedule module D for execution at time to

and the new data values will be held pending this time. If no special

action is taken, this will result in module D being executed three

times to produce new results. Each time it executes, the new value will

be identical; thus, if it differs from the current value, three re-

quests will be made from D to activate successor modules. Thus, A, B,

and C will all appear in the execution schedule three times. After

each of these modules executes, D will be scheduled 9 times. Thus, the

hazard of explosive proliferation exists for activation requests.

Notice that, if each module has no memory of its own (i.e., all

memory is stored on external linkages), there is no danger of producing

erroneous results. The proliferation of redundant executions, however,

seriously degrades execution characteristics. To avoid this, the super-

visory system must examine each activation request for the presence of

the module requested in the same time slot. If it Is present, the

58

request for activation has been satisfied by another module.

User Declared Activation Suppression. In addition to automati-

cally suppressing free running events, the user may indicate some

suppression within the target system. From semantic operation

knowledge, the user may determine that a particular sequence of arrivals

will occur. Interim calculations can be suppressed So the last arrival

will trigger the computation.

To accomplish this, provisions were incorporated in the des-

cription to distinguish two types of inputs to a functional module:

1) Activation inputs

2) Data inputs.

The functional module is evoked only if the changed information is

connected to an activation input. A change on a "data" input will

not cause the functional module to activate. The distinction is im-

portant if some input information is dominated by other inputs.

Example SVC Constructions. To illustrate SVC operations, several

construction examples are presented to show both description alterna-

tives and execution impact of selected techniques.

Figure 9 illustrates three possible configurations to construct

a controlled arithmetic function generator. Two inputs (II and 12)

are presented with a coded operation to perform (OP CODE) to produce

an output (0). In Figure 9(a), the operation is very simple; the

output is controlled directly by selecting one of the four computed

results. Unfortunately, the useful operational activity of this

59

____J)+ +
R

E 0-+t fcrE f

oP CODE
DECODE

OP CODE

(b)

:rlr +

SE 2

TT

OP CODE

(c)

FIGURE 9

60

construction is very poor. All four possible functions are computed

for each input combination, but only one result is selected for output.

Execution efficiency is improved in Figure 9(b). Here control

lines are provided to each of the four functions. The output is not

computed unless the control line is "true". Control line values are

produced by the DECODE module from the OPCODE.

The arithmetic module computational requirements are dependent

upon the method used to select the appropriate output. If the SELECT

function is used, the computation module needs only to compute the

arithmetic function if the control line is "true". If the OR network

is used, the computation module will also have to set its output to

zero if activated with a "false" control line value. With the network

construction of Figure 9(b), each input value change will cause all

four arithmetic function modules to activate. Only one, however, will

evaluate the arithmetic function since exactly one control line will

be true. Therefore, the number of activities has not been substan-

tially reduced, but the duration of each may be shorter.

A further improvement is presented in Figure 9(c). Inputs are

directed by the DISTRIBUTION module toward the arithmetic function

module which has been selected. The correct output (also controlled

by the OPCODE signal) is produced as the output of the selection

module.

It is noteworthy that execution efficiency has been enhanced by

increased usage of dominant control information (i.e., the OPCODE) in

the construction. With the most efficient execution construction,

61

TEST RESULTS
INPUTS

D c 0

V DDESCRIPTION E
E C

MONITOR

INITIAL TESTING
(a)

TEST NEW PREVIOUS
INPUTS RESULTS RESULTS

D C

R - - MODIFIED 0
I - TARGET L
V : DESCRIPTION * LE E \ COMPARE

R C

RECONFIRMATION TESTING
TMONITOR

FIGURE 10

62

changes in the OPCODE value interpretation will cause more substantial

modification than the inefficient construction of Figure 9(a). In

effect, we have been improving the simulation performance by increasing

semantic assumptions among modules and increasing system cooperation.

All three forms, however, produce the same numerical results.

As major subsections of the target system description are developed,

each may be individually tested as illustrated in Figure 10. Test inputs

are provided from external storage and the results are both monitored

for hard copy inspection and stored for future reference. If the sub-

system is modified, the same input file can be used to generate results

for comparison with previous results (Figure 10(b)). This technique

provides confirmation of the modification. Both during and after the

testing, the network subsystem description remains unchanged, even if

testing probes are inserted in the interior. Thus the operational

system is identical to the tested description.

63

IV. Experimental System

Objectives

The experimental system was constructed to test the validity

and convenience of the principles presented in previous sections.

This exercise was to provide direct feedback to the designer and in-

dicate areas requiring additonal refinement or improvement. The

experimental system also provided direct experience to identfy bene-

ficial host hardware characteristics and estimate the construction

cost of an operational system.

Scope of Effort

While few frills were incorporated in the experimental system,

the intent was to replicate useractivities in describing an actual

machine.

For these purposes, an implementation of SUMC was selected for

simulation on the UNIVAC 1108 using a FORTRAN V based system. The

SUMC simulation was performed at the microprogram level using the imple-

mentation described in MSFC document S&E-ASTR-C-004. A subset of the

hardware description was selected to reduce the effort required for

machine simulation and increase attention to the SVC techniques re-

quired. For this reason, some elaborate operations of the SUMC des-

cription were not incorporated (e.g., square root, floating point

operations, interrupts, etc.).

The UNIVAC 1108 operating under EXEC 2 was used to host the

experimental system. The software system was coded in FORTRAN V

64

supported on this system.

The software consisted of the following components:

1) Handcoded primitive modules for hardware simulation

which could be tailored using PARAMETER statements and

adjusting formal parameters.

2) Library preprocessor to accept the input/output and

usage restriction description of functional modules.

3) Target machine preprocessor to convert symbolic target

machine descriptions into tables and execution code

compatible with the supervisory system.

4) Runtime supervisory routine to manage the dynamic execu-

tion of the system using the principles presented in

Sections II and III.

In general, description automation and diagnostic capabilities of the

experimental system were much more modest than requirements of a

fully operational system but served as experience vehicles for the

design staff.

To obtain a runnable SUMC model for simulation, the following

activities were required:

1. Partition and model the hardware.

2. Code an example program in assembly language.

3. Code microprogram routines.

Of these, partitioning the hardware required the most effort. Ex-

tracting the necessary information from the documentation required

65

collecting not only details of individual eomponents, but discovering

their cooperation and interfacing requirements. Although the documen-

tation was quite good in comparison to similar descriptions of other

machines, some modeling work required incorporating assumptions and

definitions which could not be gleaned from available information.

This omission was most serious with respect to timing information of

the example machine. Since only a few timing relationships could be

ascertained from further investigations, the missing sequencing in-

formation was estimated for the model.

Once the operational characteristics were well understood, the

conversion process to the functional module description required only

naming all component modules and signal lines. These were then trans-

cribed to the card input required by the preprocessing system. The

conversion to SVC compatible form required approximately 3 man-days

and two descriptive preprocessor runs to purge keypunch errors.

To exercise the example simulation, a sample routine was coded

in assembly language and converted by hand to numerical machine code.

This routine performed a bubble sort on a list of positive integers.

The instructions used by this routine indicated the microprograms

required to complete the exercise.

Microprograms were hand coded from the documentation flowcharts

for instruction fetch and bubble sort instruction set. Producing the

microprograms for the instruction fetch and 7 instructions required

approximately 2 man-days. A great portion of this time was consumed

in the hand conversion of microoperations to numerical values which

could be directly loaded into micromemory.

66

After the description was complete, the example system was

tested on the developed support software. This testing was intended

to point out coding/logic errors in the SVC experimental system, des-

cription errors in the target process, and possible faults in the

operational philosophy. Testing continued until only errors identified

with the target process operation description were found. At this

point, experimental runs were discontinued since the purpose of the

project was clearly not the development of an operational SUMC simula-

tor. Attention was then directed toward analysis of the experiences

and possible extension consequences for SVC.

Experiment Analysis

From the experimental system, insights were gained into philosophy

provoked, error sources, technique effectiveness, user problems with

the description method, and execution inefficiencies. These observations

result in the recommendations for SVC extension in Section V.

System Deficiencies

The most obvious shortcoming of the experimental system was exe-

cution speed. Although it was recognized that the raw translation would

not produce an efficient simulation, the extreme slowness was sur-

prising. Execution on the example system approximated one microinstruction

per CPU second; clearly, this would not be sufficient for an operational

system. The sources of this degradation were:

1. Excessive Overhead. Every functional module subroutine was

analyzed for output change scheduling of interconnected modules,

data holding, and time scheduling. Furthermore, on a

67

microinstruction level, the execution time for primitive

operations was extremely short. These factors result in

a large percentage of computation efforts to center on

supervisory functions rather than target process functions,

2. Excess Change Monitoring. Many constructions appeared in

the example machine description for which exhaustive change

monitoring was redundant or ineffective. In general, a

module input change will usually result in an output change.

The probability of output change increases as the output

information path width increases (i.e., number of bits).

3. Excess Target Information Movement. The general assumption

that all modules may be simultaneously active causes com-

puted information to move from a local area in the functional

subroutine to a holding supervisor queue and finally to the

allocated space for the target information path. In a great

many cases, the information could have been directly placed

on the information path without going through the supervisor.

Some of these problems were anticipated initially; their degradation

potential, however, was vastly underestimated. In Section V, methods

are indicated to reduce these problems through automatic adjustments

of the target description before execution commences.

Error Sources

The testing process revealed several problems which were not dis-

cussed in Section II. Among the problem sources were the following:

68,

1. Inconsistent Initial Conditions. The discussion of Section II

and III deal with system dynamics after the execution has

begun. It was assumed that the system was in a correct opera-

ting state and the methodology used would not create errors.

It was not anticipated, however, that initial conditions could

be specified such that outputs of functional target components

would be inconsistent with initial inputs and operational

functions such that the system would start incorrectly and

never recover.

For example (Figure ll(a) in one test run, the address

to memory was initially zero (through default). The memory was

properly loaded, but the first address presented to memory

during execution was zero (i.e., no change in address). This

resulted in the memory not being activated to extract the

correct memory location and the simulation stalled. The problem

is that the memory output did not represent the value of

location addressed.

2. Activation Hazard. In Section III, the distinction was intro-

duced between activation and data inputs for functional modules

to permit user suppression of excess activity. Recall that a

changed value on the data input will not cause the module to

activate. There is a hazard with this approach which was not

anticipated.

Consider the example of Figure 11(b) with activation input a

and data input b. This construction results from the user knowing

69

INITIAL CONDITION HAZARD

(a)

A

-00

DATA INPUT HAZARD

(b)

)ATA

OUTPUT

CONTROL

(c)

FIGURE 11

70

target process semantics. From the target process

operation, M2 completes before Ml and the value of 0 is

not significant until Ml is complete. Notice, however, that

if the b value changes and Ml produces no change for a, the

functional module for addition will not be executed.

Reinterpretation is required for the "data" input.

Rather than completely suppressing activation, this input

should produce a subordinate scheduling of the module which

occurs in the event an activation input does not chalqe value.

This has the effect of postponing the execution until all

significant inputs have arrived.

3. Incomplete Functional Design. As illustrated in the con-

struction examples of Section III, semantic assumptions among

modules can cause different results to occur. This is fre-

quently the case where the specification of the module's

function is only partially given.

Consider the network of Figure 11(c). Suppose we

specify the operation as,

"When the control line is 'true', the output is set to

the value of the input. When the control line is 'false',

the input value is ignored."

This statement is incomplete in two respects. First, does

the transfer from input to the output occur at the transition

of the control line from 'false' to 'true', or is the input

copied to the output anytime the control line is 'true'?

71

Second, what is the value of the output if the control

line is 'false'? Two possible alternatives are that the

output remains the same as the last output value (soft-

ware approach) or is set to some predetermined constant

such as zero (hardware approach).

Methods Analysis

In light of the experimental system experiences, the methods

utilized were reviewed for applicability and convenience. In particular,

their objectives are compared to the results and side effects they pro-

duce.

1) Event Activation. Event activation to guide the execution

sequence was intended to eliminate overt expression of both

sequencing and information flow information. In large part,

this technique did . allow easy integration of components

in the system. From the constructions used in the example

system, however, the sequence was frequently apparent since

the information flow patterns indicated few successors. In

many cases, it appears possible to coalesce substantial

portions of the description by static analysis of the inter-

connection pattern. This would eliminate some dynamic

searching during execution to extract successor relationships.

2) Change Monitoring. Change monitoring to control event fronts

caused substantially more problems than anticipated. As pre-

viously discussed, change monitoring produced excessive

activity, directly contributed to activation hazards, and

72

provoked excessive overhead. It is obvious that sub-

stantially more attention is needed to reduce the number

of change monitors and bring execution characteristics within

acceptable limits.

One of the major advantages of change monitoring is to

suppress execution of downstream components which will pro-

duce the same results. This prevents computation of target

features which treat only "special cases" unless the special

cases actually occur. Some tradeoff analysis is required

to balance the effort of change monitoring to the cost of

unfruitful downstream computations.

3) Description Control Using Delay Time. The use of delay times

to control execution in the target description execution

sequences was a mixed blessing. Delay times greatly simpli-

fied scheduling portions of the supervisor. The convenience

to the user, however, was less than successful. Designers with

hardware backgrounds had little difficulty in assigning delays

to control the system. Software personnel had substantially

more trouble with this description since their past experience

provided no training for an orderly approach to the problem.

It was found, however, aftera few test experiences with the

experimental description, they began to appreciate the require-

ments in this format. Time did not permit a second trial for

software background personnel to assess how fully they com-

prehended the reqduirements.

73

It is recommended that the delay time control method

might be retained for organizing internal sequencing of

parallel operations, but that the numbers assigned to

the modules be automated. The user might indicate the

required sequences in more familiar terms which could

then be converted into the required numbers for the

system's use.

Objectives Review

The objectives presented in Section I are compared with exper-

imental system experiences to determine which have been attained,

are potentially possible, or appear unlikely.

Design Ease

In general, target process design using descriptive mechan-

isms of interconnection and delay time was more difficult than

an equivalent design with traditional programming methods. Much

of the additional effort resulted from the requirement for more

exhaustive operation analysis before the system could begin

executing. With inputs and outputs enumerated for library modules,

designers must at least consider how and where to connect informa-

tion paths. Thus, while more time is required to complete the

initial design, the initial design resulted from more complete

and mechanical analysis, making it less error prone.

As previously indicated, software oriented personnel found

controlling the execution sequence with delay times an obtuse

technique. The synchronizing points in the system were not as

74

transparent as with the "fork" and "join" software constructions.

The information flow path description, however, greatly eased ignor-

ing parallel activities that were computationally disjoint opera-

tions. With cooperating parallel processes, the points of inter-

action and information exchange are easily ascertained with the

information flow diagram.

Operational incomplete designs

A system may be incomplete in one of two ways: 1) Only a

portion of the whole system is available, or 2) Only a subset

of the system operations have been developed. Awareness of target

process operations and construction of the objective system are

not instantaneous or disjoint activities. The objective is to

prevent ambiguities or pending developments from halting system

development progress.

Although independent testing of subsystems was not used in

the experimental system, some hindsight observations can be made.

Clearly, the SVC principles will support a partial description

and permit exercise of this unit without the totality of system

description. With subsystems, however, the necessary test cases

which insure completeness may be difficult to derive. It appears

that the best partitioning of subsystems should maximize the inde-

pendence of input terminals: values on one input do not imply

information concerning other input values.

When only a subset of the system capabilities are realized,

the major obstacle to meaningful testing is deciding what should

75

be done in the event umimplemented components are required to execute

by some test cases. Clearly, the output of these test cases will

not be significant, however, the potential for negating succeeding

testing exists. Thus, some "neutral" operation must be substituted

for the missing feature. Whether this operation should not produce

any outputs or should simply forward the input information will

depend upon what function is missing.

Modification tolerance

The experimental system was quite successful with modification

tolerance. Several substantial changes were made in the target

machine description based upon early testing. The isolation of

these effects was particularly encouraging when errors were accident-

ally introduced during modification. As hoped, the correctness

of the change could be systematically confirmed by inductively

showing some point in the machine description where downstream com-

ponents would be unaffected.

Operational fidelity

Again, the results from these experiences were encouraging

with the experimental system. Delay time control to introduce

any degree of parallelism without disturbing existing system com-

ponents was quite successful. No target machine functions were

encountered which could not be expressed in the required execution

format.

76

Automatic abstraction

The abstraction process was originally envisioned as an

automatic process to reduce the process operation detail level.

This was to be accomplished by considering larger subsections in

the description and condensing the interior process. In large

part, this is infeasible within current restriction on SVC

operation presented.

While it is possible to establish larger subsections through

arbitrary interfaces, the reduction of activities in these sections

requires semantic analysis of the constituent components. That

is, to combine and streamline activity sequences, the significance

and utilization of dynamic activities must be analyzed.

One possible abstraction is to convert the dynamic interpreta-

tion of activities to a static sequence. This process is similar

to compiling execution commands rather than interpreting them.

The appropriate sequence could be gleaned by capturing the sequence

of operations during test case exercise. The sequence could then

be commanded by the supervisory system rather than driven from

output change analysis. This technique requires,

1) The test cases used should exhaustively depict all possible

sequences of the semantic operation in the target process.

2) The activity on the interface and conditions which cause

subsection reaction should be identified.

To illustrate the problem, consider the effort required to

convert the microprogram level simulation to an instruction level simula-

77

tion. The first problem is that logical entities of the instruction level

model (i.e., individual instructions) use common physical machine

parts in their execution (i.e., data paths, execution directing

registers, functional units, etc.). Thus, the execution of two

different instructions will possibly utilize some common physical

resources on the microprogram level.

Furthermore, certain activities will require external inter-

pretation to remove detail events. For example, information may

be transferred through two cascadedadders by adding zero to a value.

Thus, equivalence between adding zero and transfer of data must

be displayed.

Some microprogram routines use iterative processes to deter-

mine the outcome of an instruction. It may be quite difficult

to abstract this process since differences may exist among itera-

tions. Compression requires mapping a sequence of microscopic

activities to a single high level one.

Thus the automatic abstraction of the system appears to require

more study to develop a recognition framework with sufficient gener-

ality for a host as flexible as SVC. Some aspects of the required

semantic processing are presented in the optimization discussion

of Section V.

78

V. Extension of Current Work

To move the Software Validation Complex from the current

experimental stage to useful operation requires further attention

to some areas. These activities include refinement of the target

process description methods, performance enhancement in host execu-

tion, and development of a congenial support host hardware/software

environment.

Modifications For Describing Target Process

The experimental system utilized an intentionally crude trans-

lation system for target process descriptions. This experience,

however, permitted projecting desirable features and their relative

importance in an operational environment.

The target description translator operated on a symbolic

interconnect format. This required assigning unique names to

every functional module and information signal. The usual

aggravations of transcription errors and multiple definitions

were observed. Furthermore, the user must assign names to

entities which he does not care about. This problem is minimized

by using an interactive description mode whereby blocks are inter-

connected and names assigned only if the user chooses to identify

them symbolically.

Additionally, the user should be able to integrate previously

developed subsystems simply interconnecting interface information

paths. These connections could be automatically checked to assure

79

that design limits and assumptions across the interface are

consistent.

The subsection storage and retrieval were not implemented

on the experimental system, however, this effort is not expected

to require substantial effort. Requirements for cataloguing

available constructions could be treated in a very similar fashion

to the library subroutines presently used. With little additional

expense, a description editing support system could be included in

this development.

The user communications interface should include ability to

establish default values for bit numbering, initial values,

information path sizes, binary value coding representation, etc.

This information could be generated as a preamble to the descrip-

tion conversation and requires only the most simplistic processing.

As indicated in reviewing experimental system performance,

the assumption that all components could be simultaneously active

produces undesirable execution consequences. Thus, the assumption

should be modified to permit the user to describe activities

in sequence which could then be considered as a parallel com-

ponent in the global execution. This feature could be added by

selectively modifying some existing library subroutines to elim-

inate cooperation with the supervisor and insert the direct calling

of the next sequential action without scheduling through the super-

visor routine. Similarly, the data could be directly coupled

among routines without going through the supervisory data holding

80

process. The appropriate delay could be accumulated through each

routine as the sequential operation progressed. Thus, the same

library routines could be used to generate sequential processes by

textual source code modification to produce sequential static

execution rather than interpretive dynamic operation. (Fig. 12)

To retain Fortran as the host language, a preprocessing system

should be incorporated to massage the source code. This pre-

processor should operate like a macro expander with output in

Fortran text. This translation would accommodate a variable

number of input parameters, assign unique subroutine names for

different modifications of the basic routine, customize inter-

face with the supervisor, and perform other modification functions

to adapt the basic target process to a particular target environ-

ment.

Hardware/Software Simulation

To accomplish simulation of a hardware/software environment,

there are two alternatives: 1) Describe the hardware host and

present the software to be modeled as an exercise of the hardware,

or 2) Model the hardware and software systems separately and

define the interaction between them.

By operating target software support on target hardware,

a complete duplication of the actual system is possible. This

fidelity, however, is obtained at a substantial cost. Effectively,

the system becomes a three level interpretation process and hence,

extremely slow. Thus, while runs of the actual software support

81

system target code may be desirable to confirm its operation, the

speed degradation will be so severe, other options must be investi-

gated.

The other option is to partition the target machine into

hardware and software portions and define the cooperation between

them. This requires some overlap between the two descriptions

such that the active operation of one will effectively prohibit

operation of the other. For example, an external and separate

model of the operating system could be provided along with the

basic operation description of the target machine hardware. When

the operating system portion is running, some hardware components

will not be available (e.g., memory occupied by the operating system

software, instruction register of the target machine, user regis-

ters of the target machine, etc.). Other target subsystems (e.g.,

disk transfers, I/0 ports) may exhibit reduced performance.

Interference can be modeled as conditional changes in delay char-

acteristics. Additional exploration is required to refine the

necessary principles to switch description level among different

logical units to effect this more elaborate simulation with

economies in time.

Performance Enhancements

From experiences with the experimental system, it is obvious

that substantial efforts must be directed toward enhancing the

operational cost of target executions. Acceptable vehicles for

this advance are improvement of current operational methods,

development of new techniques, and providing 8 more flexible

82

host environment.

Modification of current technique

Several sources of performance degradation were identified

in the previous report section. Modifications are presented here

to alleviate these problems by reducing operational generality

once the target system is well defined.

In general, the experimental system suffered from an excess

of supervision. While much of this resulted from the myopic

view of functional units and simultaneous environment assumptions,

once the target description is complete, generality can be reduced

to the specific target machine case.

The supervisory system is responsible for the following

activities:

1. Monitoring value change on information paths.

2. Scheduling modules for execution using delay and change

information.

3. Holding resulting data back until the appropriate time.

The change monitors accomplish two functions:

1. Terminate iterative procedures (feedback or phased

information structures).

2. Indicate when further processing along information paths

is no longer required.

If we require that the functional procedures are coded in at

least serially reusable fashion (i.e., they may also be reentrant),

sufficient conditions can be defined to reduce the instances

83

TARGET PROCESS

SUPERVISoR

FULLY SUPERVISED OPERATION

SUPERvISOR

II

DATA FLOW

- - EXECUTION SEQUENCE
REDUCED SUPERVISION

FIGURE 12

84

where change monitors are required. This set will insure that

termination and phased relationships of the original target system

are preserved. The serially reusable module property will insure

that if a process is activated without an input change, incorrect

results will not occur.

Having identified conditions to permit excess activation

without error, it is possible to remove change monitors which are

unproductive. As previously indicated, some monitoring locations

are unproductive because they almost always indicate the value has

changed. When this occurs, we can eliminate them and simply assume

new values on these information paths are different from the current

value. -The question to be answered at each nonessential monitor-

ing point is whether the value checking reduces execution time

or would the system be faster by simply allowing target module

execution.

Essential monitoring points are found through graph analysis

of the information flow structure. After a collection of target

modules are found which form a loop, essential change monitors

are required:

1) Sufficient to break all feedback loop structures.

2) Monitor all input changes from modules external to the

looping structure.

Result data holding prevents the possible destruction of

input information to parallel operating successor modules which

have not been executed. The potential for this hazard can be

ascertained from the delay times and information flow pattern.

85

CHANGE MONITOR

FULL CHANGE MONITORING

ESSENTIAL MONITOR

PRODUCTIVE MONITOR

REDUCED MONITORING

FIGURE 13

86

By showing that successor modules are not in simultaneous execu-

tion, results can be placed directly on the output information

lines.

Execution sequences are dynamically determined by the super-

visor since individual modules have no interconnection information.

If however, nonfeedback paths are present in the target descrip-

tion, the paths can be executed without supervision. The final

result and accumulated delay time is then presented to the super-

visor. The supervisor must intervene when a module is encountered

with inputs from more than one path.

The operational adjustments from change monitor reduction

and direct data forwarding are illustrated in Fig. 13.

New techniques

In addition to the refinement of existing techniques, new

methods may provide further simulation enhancement. As described

in Section IV, one problem encountered was inconsistent outputs

with the initial input conditions specified. This difficulty

can be surmounted by introducing an autoinitialization procedure

prior to commencing target execution. During this procedure, each

functional unit in the target machine would be executed with the

user supplied initial conditions. The resulting outputs would

then indicate the required initial conditions for other information

paths. The outputs produced would replace defaulted information

or be compared with other initial values specified. If the output

differs from the initial value specified on the information path,

a diagnostic to the user would be issued.

87

Although the exact methodology has not yet been developed for

autoinitialization, it is clear that some sequencing in the initial-

ization execution will be required. For example, cyclic paths should

not be followed to prevent instability in termination.

The current SVC operating principles ignore any analysis

of individual target modules semantic properties. This restriction

was imposed to ascertain how much could be doen without semantic

information. Clearly, however, some improvement and analysis

techniques are fundamentally dependent upon semantics. This

information can be used to determine the potential sequential

or simultaneous structures in the target machine and to modify

SVC operations to streamline these events.

Semantics can be ascertained by two methods: 1) Externally

defined operational characteristics, and 2) Dynamically ascertained

behavior from runtime operation profiles. There are advantages

and drawbacks to each of these approaches; a good approach will

likely draw on both techniques.

With external definition of module behavior, any error in

the description will likely provoke errors. Therefore, the

behavior must be conservatively expressed even though some special

cases rarely occur. Some semantic behavior in the target machine

may arise from the combination of semantic patterns; extraction

of these effects must be automated by the system. Since the

individual describing the target process will usually not be the

author of functional subroutine code, he is illequipped to define

the semantic behavior. Thus, the externally supplied behavior

88

infcrmation should be attached to the library components and obtained

indirectly by user application to these functions.

Dynamic behavioral information can be obtained by observing

the dynamic transaction patterns in the target process during

user test runs. Gathering this information involves observing the

frequency of use and percentage of change in the target system.

The objective is to ascertain what portions of the target descrip-

tion constitute the major processing sections to warp SVC service

to favor these units. As will be indicated, this behavioral

information will be extremely useful in distributing the work

load on a flexible host.

The major problem with observed behavior is that the

absence of characteristics does not insure they will not occur.

That is, through incompleteness of the test cases, some target

operations are not executed for observation. Thus techniques

used in adapting the system with observed information will be

limited to tuning the procedures rather than reducing them through

elimination.

Host characteristics

Much of the process inefficiency on the experimental system

resulted from the inherent restraint of executing a highly para-

llel target description on a serial host. The individual actions

required by functional module subroutines do not require elaborate

processing and in large part, the power of the 1108 was poorly

utilized. Most code segments were so short that optimized code

89

MINI 1I

FIGURE 14

INTER-
PROCESS

2 EXCHANGE
MINI 3

MINI 4

SVC HOST CONFIGURATION

FIGURE 14

90

from the compiler would not be substantially faster than a raw

translation. A much more modest and flexible machine could have

easily performed the experimental tests with equal or increased

execution speed.

It is therefore suggested that a more compatable host might

be a collection of smaller machines (Fig. 14) rather than a

single large machine. This type of host requires development

of allocation policies and definition of the cooperative structure

required to make the system operational.

The two basic forms for instituting a federated system

proposed are: 1) Hierarchy structure and 2) Distributed coop-

erative subunits. These forms are illustrated in Fig. 15. By

simply extending the concepts of change initiated activation to

permit external changes on information lines, the target process

description does not restrict distribution of the process to host

computers. Thus coordination and integration is simply a problem

of how one member of the federated system identifies other members

which must be notified concerning interface information changes.

The local process within one computer of the host system

uses local activity information constrained by global status

to manage the description subpart. It is necessary to prevent

the processes in different computers from getting too far out

of synchronization with other in time. The material effects of

time spreads are that interface information between processors

may be modified before its utility has expired. There is also

91

SUPERVISOR

TARGET TARGET TARGET
ARTITION PARTITION PARTITION

1 2 N

HIERARCHY CONTROL STRUCTURE

(a)

TARGET
PARTITION

K

* TARGET
TRGET ARTITION

PARTITION N

TARGET
PARTITION

2

TARGET
PARTITION

3

DISTRIBUTED CONTROL

(b)

FIGURE 15

92

the difficulty that one subsystem may "lap" another in the target

process description. It is not necessary, however, to require

all processors to operate in locked step so long as each can

identify when to idle for the common good.

If the hierarchy structure is selected, control is central-

ized in higher levels. More global processes directly command

lower level processors and indicate when to begin and end execu-

tion in the target description. For example, the supervisory

machine will analyze global interconnection patterns to identify

conditions (i.e., lines which change) which imply that coordina-

tion among computers is necessary; the subordinate process then

executes in a free running fashion until the specified halt

condition prevents further execution.

With the distributed control of the system, each target

partition is responsible for cooperative action. Each partition

is constrained to supply interface information to a common area

(either globally common or shared between pairs of cooperating

processes). In addition to the data value, the simulation time

of the process producing the information must be supplied. Simi-

larly, each processor is required to avoid overlaying information

currently being used by other physical units. To accomplish

this, P and V semaphores or some form of buffering scheme must

be employed.

The decision to institute hierarchy or distributed control

should be determined by merit analysis of each approach. Central

93

control is desirable when timing decisions are easily predicted

and the supervision does not bottleneck the system. The amount of

process supervision will probably decrease through centralization

but concentrating it in one location may produce an overworked

supervisory machine and substantially idle processing
machines.

Decomposition into decentralized control will increase the

number of supervision steps, but provide faster execution through

parallel techniques. With decomposition, the potential for dead-

lock must be avoided to prevent simulation stalling where each

description partition idles waiting for others to execute.

Allocation of target process. From the global target process

description, processing portions are allocated to individual SVC host

machines. This allocation is intended to speed execution through

parallel techniques; several allocation guidelines contribute to

this goal:

1. Match logical parallelism in target to physical parallelism

in host.

2. Balance allocation to minimize idle time of each host

processor.

3. Minimize information traffic among partitions to reduce

overhead.

4. Maximize sharing of procedural routines.

The allocation is constrained by the physical characteristics of host

computers, including the magnitude of resource availability (e.g. memory

94

size, processing speed, etc.) and configuration restraints (e.g. access

to special peripherals , number of I/O ports, unique hardware capabilities,

etc.).

By dynamic monitoring of the target process behavior during

execution of user test cases, the allocation policy can be adapted

to refine initial decisions. The interface data flow can be examined

to determine the dynamic information flow among allocations and the

location of "dynamic neighborhoods" in the target description. Using

this information, partitions can be adjusted to balance the effort

among physical host support computers.

Within each host processor, the machine resources can be

assigned for the local target procedure to smooth interaction among

federation members. For example, the partition might be initially

implemented with linked subroutines. Through automatic monitoring of

user test case executions, the primary information processing patterns

would indicate those description components for which speedup tech-

niques would most enhance system operation speed.

The most frequently used target description components and

required SVC supervision functions would be converted to micro-

programs. Limitations are the number of opcodes unused by the target

description subroutines and control storage space. By delegating these

functions to microprograms, main memory space would be released.

The available free space in each host machine would be filled

by converting subroutines to macros. This expansion would reduce-

95

the execution and data linkage overhead of subroutine implementations.

SVC Host Design Estimates

To maximize the early completion of a usable system and minimize

exploratory development costs, the initial SVC hardware and operation

procedures should be simplified. It is assumed, therefore, that the

initial SVC would be a dedicated system supporting a single investigation

at any particular time.

The information interchange among minicomputers would be co-

ordinated through a shared random access memory. This device would act

as a buffer for information flowing between target partitions and

a repository for infrequently required target processes. The local

target information data and necessary execution routines would be

permanently assigned to given minicomputers for the duration of target

process execution.

Individual users would maintain physical control of their

individual target systems, previously developed subsystems, and custom

functional routines with magnetic tape and removable disk cartridges.

At the session onset, the user would load the system with his develop-

ment state and begin his investigation.

System support software, subroutine library, and special utility

routines would be available from system disks and tapes. These would

be available at the user's discretion. A card reader and line printer

would provide initial offline development, documentation support, and

post-mortem analysis for the investigation.

96

The main user interface during the session would be through the

interactive CRT. Through this device, target subsystems would be constructed

and exercised with requested results saved on the user's storage devices.

At the end of the session, the developed target processors and investigation

results would be dumped to his storage to clear SVC for the next user.

Host Hardware.The necessary equipment characteristics for an

initial SVC host system and representative examples are:

1. Minicomputer- 16 bit machine, microprogrammable with

writable control storage, 16K words of 1 usec memory, minimum

of 8 I/0 ports (Microdata MICRO 1600/21)

2. Communications core storage - 128K of 16 bit words, 750 nsec

core storage (Standard Memories Model EF16K36CP5)

3. Disk system - 1.2M 16 bit words, 100KC word transfer rate,

removable disk cartridge (Microdata Model 2852)

4. Magnetic tape transport - 800 BPI, 9 track, 25IPS (Microdata

Model 2811)

5. Support peripherials

Line Printer - 250 1pm (Microdata Model 2732)

Card Reader - 300 cpm (Microdata Model 2720)

CRT Terminal - graphic display with keyboard and light pin

interaction (DEC GT-40)

The specific equipment cited indicates available hardware with satisfactory

performance specifications for use in the SVC. It is not suggested that

these are optimal either in cost or performance but rather serve as examples

97

from which cost estimates can be developed (Fig. 16). With the possible

exception of paper handling equipment, recent rapid improvements in

hardware and drastic price reductions indicate that commitment to specific

devices should be postponed as long as possible.

Software support system. To extend the present state of the SVC

software system will require additional development effort. Some extensions

will draw directly upon the experimental system groundwork software;

others will require more research before full development is possible.

Among the necessary SVC software components are:

1. Extension to current execution supervisor to accommodate

external stimulation among partitioned target description

elements.

2. Automatic analysis of the target process

a. Adaptation of library subroutine code to perform data

forwarding and serial execution linkage.

b. Automatic activity monitoring to collect dynamic behavior

information for input to the allocation policy.

c. Distribution methods for distributing the target process

among host computers using dynamic and static analysis information.

3. User interface software to process interactive target process

descriptions and link previously catalogued descriptions. Symbolic

reference support for user inquiries and demand monitoring.

4. Micro program translator to convert library process modules

to microprograms and integrate them in the operational environment.

98

Estimates of required effort and costs for the necessary

software development are presented in Figure 16.

From the analysis of Figure 16, developemnt of an operational

SVC system will require a commitment of from $250K to $300K and

development time of 1.5 to 2 years.

99

HARDWARE COST ESTIMATE

ITEM QUANTITY UNIT COMPONENT

PRICE COST

Minicomputer 4 $10,000 $40,000

Random Access Memory 1 30,000 30,000

Disk System 2 13,000 26,000

Magnetic Tape Transport 2 5,000 10,000

Line Printer 1 14,000 14,000

Card Reader 1 4,000 4,000

CRT Terminal 1 12,000 12,000

Estimated Hardware Cost $136,000

SOFTWARE COST ESTIMATE

SOFTWARE PACKAGE EFFORT (MAN-MONTHS)

Supervisor 6

Target Process Adaptor 12

Performance monitors 3

Allocation software 6

User interface software 5

Microprogram translator 18

Estimated Effort 50 Man-Months

Cost @$2,500/man-month $125,000

FIGURE 16

100

VI Conclusion

An operational methodology has been developed and examined
for the construction of a Software Validation Complex. This test bed
would substantially enhance current techniques of computer development

and checkout for both proposed new systems and modifications to existing
ones. Through a flexible host support system and automation of the
support features the user is freed from many restrictions which impede
his progress using current computer hosts. The SVC permits the host to
adapt to the process under investigation rather than require contortions
by the investigator to formulate the objective within host requirements.

